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FIG.l. Low magnification view of motor nerve ter-
minals (NT), Schwann cells (SC) and intramuscular
axons (a) in a living frog cutaneous pectoris ncuro-
muscular preparation. Notice the nonmyelinating
Schwann cells covering the branches of the nerve
terminals. Tridimensional reconstitution by a projec-
tion of 30 horizontal scction scries. The structures
have been stained with the fluorescent membrane dye
FM1-43 for 60min and then washed free of FM1-43.

Na*-K*-ATPase activity, it was suggested that
the enhancement of neurotransmitter release may
be due to a depolarization-induced Ca*" influx
(Bidard et al.,1984). CTX was reported also to
enhance Ca*-dependent ACh release from pure
cholinergic synaptosomcs (Molgé et al.,1992b).
If CTX depolarized synaptosomal membranes to
levels above that needed to activate voltage-gated
Ca®* channels, then it would be expected that
membrane depolarization, via Ca?* influx,
would contribute to this Ca%*-dependent ACh
release caused by CTX. However, blockade of
Ca?* channel subtypes in Torpedo synaptosomes
(Moulian et al.,1993) by simultaneous applica-
tion of FT'X, a toxin purified from Agelenopsis
aperta venom, synthetic omega-conotoxin and
Gd** (Molgé ct al.,1991b) did not prevent ACh
release causcd by CTX in the presence of Ca®*
(Molgé et al.,1993a). These results may suggest
that CTX exerts its effects on ACh release from
Torpedo synaptosomcs by increasing synap-
tosomal Na* levels sufficiently to reverse the
Na*/Ca?* exchange system which normally uses
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the Na* gradient to extrude Ca®*. In the reversed
mode the exchanger will import Ca®*.

CTX also increases spontancous quantal
acetylcholine release at frog neuromuscular junc-
tions even in a nominally Ca*-free medium sup-
plemented with EGTA (Molgé et al.,1990).
TTX completely prevented activation of the
release process by CTX suggesting that the CTX
effect depends on Na®* entry into the terminal
(Molgé et al.,1991a). Furthermore, ultrastruc-
tural studies performed at neuromuscular junc-
tions in which quantal transmitter was exhausted
irreversibly by CTX, after 3—4hr of toxin action,
revcalcd a marked depletion of synaptic vesicles
per nerve terminal cross-section. The depletion
of synaptic vesicles was accompanied by enlar-
gement of the presynaptic membrane coupled to
the swelling of the terminal (Molg6 et al.,1991a;
Comella, Molgé & Legrand unpubl. results) sug-
gesting that CTX impairs the recycling process
that, under normal conditions, maintains the
synaptic vesicle population during quantal
release.

Experiments described here aim to characterize
some of the basic changes occurring at the
neuromuscular junction in situ during the action
of CTX. For this purpose we have used a
lipophilic dye, that bccomes fluorcscent only
after incorporation into the outer leaflet of surface
membranes, in conjunction with the recently
evolved confocal laser scanning microscope
which allows optical sectioning of the neuromus-
cular junction at a desired thickness and a sub-
sequent 3-dimensional reconstitution of the
imaged motor nerve terminals.

Confocal laser microscopy appears as one of
the most exciting and valuable techniques for
optical sectioning, high resolution three dimen-
sional imaging and reconstitution of fluores-
cence-labelled or reflecting cellular structures.
This kind of analysis can be done on living nerve-
muscle preparations without the need of physical
sectioning and enables the investigation of
processes, like the time course of action of CTX,
which is not readily studied in fixed preparations.

MATERIAL AND METHODS

Experiments were performed using isolated
cutaneous pectoris nerve-muscle preparations
from adult male frogs, Rana esculenta (20-25g)
between October and April. The excised nerve-
muscle preparation was pinned to the bottom of
a rhodorsil-lined plexiglass chamber (2ml), ex-
posed for 5-60min to the dye (FM1-43,
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FIG.2. linages of a neuromuscular junction (A) and of a perisynaptic Schwann celi (C) stained with the dyc
FM1-43. In B and D, the intensity of the fluorescence between the lines shown in A and C is indicated. The
peaks of the histograms in B and D (a,b.¢,d) correspond to the zones labelled in the images A and C. The images
A and C represent the 3-D reconstitution by a projection of 30 serial sections (0.5p.m steps).

Molecular Probes, Eugene, Or., U.S.A) [N-(3-
tricthyl ammonium) propyl}-4-(dibutylamino-
styryl pyridinium, dibromide (2p.M) dissolved in
standard physiological solution of the following
composition (mM): NaCl, 115.0; KC1, 2.1;
CaCla, 1.8; and N-2-hydroxyethylpiperazine-N’-
2-ethanesulphonic acid (HEPES), 5 (pH=7.25);
and then washed with the standard physiological
solution. The cxperiments were carried out at
20°C. Only neuromuscular junctions of surfacc
fibers were studicd. In somc experiments cxcita-
tion contraction of cutaneous pectoris muscles
was uncoupled by treating the prcparations with
2M formamide (Sigma, St Louis, U.S.A) as
previously described (del Castillo & Escalona de
Motta,1978). In other experiments, D-mannitol
(Sigma, St. Louis. U.S.A) was added to the
standard solution and osmolality was determined

using a Knauer (Berlin, Germany) freezing-point
osmometer. Ciguatoxin (CTX-1B) was extracted
from Gymnothorax javanicus (moray cel) liver
and viscera (Legrand et al.,1989; Murata et al.,
1990)). Tctrodotoxin was from Sigma (St. Louis,
U.S.AL).

Neuromuscular junctions were imaged with o
Sarastro-2000 confocal laser scanning micro-
scope (Molecular Dynamics, California, U.S.A.)
composed of an upwright NIKON optiphot-2
microscope equipped with a single argon-ion
laser beam emmitting light at 488nm (high
power, maximum output 25mW), with a 3%
neutral density transmission filter 1o prevent dye
blcaching. A 510nm dichroic mirroranda 510nm
long pass emission filter were used. The aperture
setting was 50pm. The photomultiplier was set at
a constant level ina given experiment (between
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FIG.3. Relative changes caused by 10nM CTX-1b on
the surface arca of motor nerve terminals and
Schwann cell somata with respect fo controls at dif-
ferent bimes of toxin action. The black columns
denolc respeclive controls.

600-900V). Images were acquired with single
scang or after averaging. Neuromuscular junc-
tions were routinely visualized with a 40x water
imimersion objective (0.55 numerical aperture).

Control of the scanner module und image
analysis of the data files was achieved with a
Silicon Graphics workstation (Mountain View,
Ca, U.S.A) integrated into the Sarastro system.
Images were analyzed with a Silicon Graphics
Personal Iris 4D/35G workstation using a
UNIX™ operating system aad the software
Image Space from Molecular Dynamics. A
series of optical sections were taken at 0.13-
0.5umsteps. Images from each experiment were
processed identically and stored on rewritable
magneto-optical disks. [n all experiments
nearomuscularjunctions were imaged before and
after the various treztiments.

RESULTS AND DISCUSSION.

STALNING OF THE NEUROMLSCULAR JUSCTION
INST

The fluorescent siining appears on wotor
nerve tecminals, on myelinated nesve fibres. and
in perisynaptic Schwann cells somata (Fig.1).
This staining is ditticult to wash out after such a
long exposure (60min) to the dye. The mechan-
ismof staining scems to be due to the high affinity
of the dye for lipid membranes coupled with an
inability to penetrate, so that the dye seems to
partition only inta the outer leaflet of surface
membranes (Betz et al..1992). 1n conirast to pre-
vious work by Betz e1al. (1992), we have found
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that the FM1-43 dye also staing living motor
nerve terminals in an activity-independent
fashion. Staining in the various membrane struc-
tures was detected on resting preparations ex-
posed for only Smin to the dye and then washed
out, with dye-free medium. This staining lasted
for more than 12hrs.

When the ncrve terminal and the Schwann cell
somata were imaged at higher magnification by
a stack of horizontal scans, the image of the 3-D
volome described by the section series (look
through projectiun) revealed both surface and
internal struetures (Fig.2). The intensity of
fluorescence was more marked at the contours
and edges than in the interior of both structures.
Pixel intensity plots of line scans (Fig.2b,d)
showed peaks corresponding to the limits of the
nerve terminal membrane and Schwann cell
somata membrane. The axoplasma of the ter-
minal and the cytoplasma of the Schwann cell
exhibited lower intensity. Having characterized
the dyc staining in motor lerminals and Schwann
cells. we performed further experiments in order
o determine whether CTX-1B way still active in
enhancing quantal transmitter release after ap-
pheation and washout of the dye. Under these
conditions, as in control junctions (sce Molgé et
2].,,1990), CTX-1B (2.5aM) increased the fre-
quency of miniature endplate potentials (data not
shown). These results indicated first that the
FM1-43 dye did not perturh the effect of CTX-1B
and secend that the dve was svitable for follow ing
eventusl changes in the nerve terminal surface
area during the action of CTN-1B

ErecTor CTX-1h oN MoTeR NERVE
TERMINALS IN St7U

In junctions in which muscle contraction was
prevented by pnor teatment with formanude,
stained with the FM 143 dyve end then washed
out, one of the nerve terminals was selecicd and,
wmaged before and afler different nmes of CTX
IB {1mNM) additicn to the stendand medium.
Usualiy 10 horizontal section images (0.5um
siep) were made for complete reconstucted
view of the nerve terminals at each thve petind
imestigated. Increases in the nerve temminad sur-
face area were evident within 15-17min of CTX-
1B (10mM) addition 1 the medium, thicincroase
in surface arca coptinued for 3hrs. Relative chan-
ges in surface area at 1, 2 and 3hms of CTX-IB
action (Fig.3) were greatest during the first hour
(S0%£2.0%; n=3) compared with the second and
third hour of CTX-1B exposure. After the second
and third howr nerve teeminals only increased
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FIG.5. Nerve terminal (NT) and pensynaptic Schwann cell somata (SC) from a junction treated for 3hr with
2.5aM CTX- B (a) and after 30min of D-mannito! (2%) added to the standard solution (b). Note the shrinkage

of structures after mannitol action.

response to CTX-1B application at living

neuromuscular junctions, Imaging methods are
the only way in which the shape changes accom-
panying cell volume changes can be determined.
However, determinations of cell volume are not
casy, even 1n a relatively simple synapse as the
ncuromuscular junction, The term cell volume is
acomplex concept because neither motor endings
nor perisynaptic Schwann cells have simple in-
dividual geometric shapes and relationships.
Furthermore, the mechanisms of volume
homeostasis in motor endings have not been ex-
plored.

Changes in nerve terminal volumc caused by
CTX-1B may result from the fusion of synaptic
vesicles to the presynaptic membrane and the
influx of Na* across thc presynaptic membrane.
Previous electron microscopic studies of motor
endings 1 fixed specimens revealed time-de-
pendent increase in the nerve terminal perimeter,
alterations 10 nerve terminal mitochondra and
profound depletion of synaptic vesicles after
CTX-1B action (Molgd et al., 1991; Molgé.
Comella & Legrand, unpubl.).

The Na* conteat of the nerve terminals is ex-
pected to be increased by CTX-1B. Under normal
conditions, watcr is in thermodynamic equi-
librium across the tcrminal membrane. However,
any change in the intracellular Na* concentration
will result in a rapid water flow from the ex-
tracellular to the intracellular compartment. Be-
cause the nerve tcrminal is readily distensible,
transmembrane water movements will result in
nerve terminal swelling. Schwann cell somata
swelling in situ is probably also related to the
increase in Nat concentration through activation

of sodium channels sensitive to the action of both
CTX-1B and TTX. The contribution of enhanced
quantal transmitter release to the swelling of
Schwann cells remainy to be cstablished.

D-Mannitol at concentrations reported to exert
an effective hydroxyl radical scavenger action
neither prevented the action of CTX-1B nor an-
tagonized its cffects. Howevcer, at higher con-
centrations mannitol exerted osmotic effects that
caused shnnkage of both motor nerve terminals
and Schwann cell somata previously swollen by
the action of CTX-1B probably by shifting water
from the intracelluldr to the extracellular com-
partment.

This report demonstrates that CTX-1B causes
time dependent changes in the surface area of
motor nerve terminals and perisynaptic Schwann
cellsin living neuromuscular junctions. We have
shown that confocal laser microscopy ts a new
tool for research on the effects of ciguatoxins on
living tissues. While the extent of its future ap-
plications in the field of the ciguatoxins is hard to
predict. its potential for neurobiological research
appears enormous.
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